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Abstract. A quantitative measure of the polarity of a
bond can be obtained through combining the two
complementary topological partitionings of the electron
density obtained from the atoms in molecules theory, on
the one hand, and the electron localization function, on
the other. This requires an integration of the electron
density in the atomic subbasins of a common bond
electron localization basin. We present the first numer-
ical application of the resulting topological definition of
bond polarity to a set of small linear systems consisting
of the FCN, HF, HCI, HBr, and NaCl molecules and the
NeAr van der Waals dimer. It is shown that the findings
are essentially in line with common expectation for these
simple molecules, thus confirming the potential value
of the novel bond polarity index for the analysis of
controversial bonding situations. Additional insight is
provided through the detailed investigation of fluctua-
tions in the basin populations.

Key words: Electron localization function — Atoms
in molecules — Bond polarity — lonic character —
Electronegativity

1 Introduction

The notion of the polarity of a bond is central to a large
part of a chemist’s qualitative understanding of the
electronic structure of molecules [1, 2]. It is intimately
connected with the concept of electronegativity, which
according to Pauli [3, 4] can be defined as “the power of
an atom in a molecule to attract electrons to itself”’. Over
the last 7 decades there have been a number of attempts
to quantify this idea and to set up electronegativity
scales. It is certainly a success of the whole concept of
electronegativity that some of these scales, as for
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example, those proposed in Refs. [3, 4, 5, 6, 7] correlate
fairly well with each other [8], in spite of their varying
theoretical and empirical foundations. Given a scale
of electronegativity the polarity of a bond is then more
or less intuitively connected with the difference in the
electronegativity of the bonding partners. However, any
attempt to derive quantitative measures of bond polarity
from electronegativities poses considerable difficulties.
There are a number of formulae relating the “partial
ionic character” [4, 9] of bonded atoms to their electro-
negativity difference [10, 11] but each of them can be
criticized for various reasons and, as a consequence,
none of them is uniquely accepted today. More impor-
tantly, there are intrinsic difficulties when estimating the
polarity of a bond between atoms which are linked to
further atoms: the number, the geometric arrangement,
and the electronegativities of the bonding partners of
the atoms under consideration may also influence the
polarity of the bond between them. While in many cases
these effects may be considered as first- and second-order
perturbations of basically atomic electronegativities, this
is certainly no longer the case for the metal-metal bonds
between transition metals: their nature may be more
significantly influenced by the coordination spheres of
the metal centers rather than intrinsic properties of the
metal itself [12]. In principle, the concept of group
electronegativities [8] might provide a way out of these
difficulties, but it is an open question whether any of the
methods devised so far will give reasonable answers in
the aforesaid case.

Instead, it is certainly justified to ask whether the
polarity of a bond can be determined directly without
reference to atom or group electronegativities. Thirty
years ago this point of view was already taken by Kles-
singer [11], who argued that the one-electron density
contains “‘much more far-reaching information about the
polarity of a bond than can be expressed through the
values of a couple of parameters from oversimplified
models”. Here, we adhere to this point of view in that the
one-electron density is the key ingredient to the topo-
logical definition of ““atoms in molecules” (AIM) given
by Bader [13, 14] and used here. Yet, it will also be shown
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that it is possible to condense the information on the
polarity of a bond contained in the density into a set of
numerical parameters. To do so, one needs both a notion
of what an atom in a molecule is and a notion of what is
meant by the term bond. In recent years the electron
localization function (ELF) [15, 16] has proven to pro-
vide a picture of the distribution of core-electron pairs,
bonds, lone pairs, etc. which is compatible with many
aspects of the traditional Lewis and valence-shell elec-
tron-pair repulsion models and at the same time has a
sound theoretical foundation in terms of averaged pair
densities or, in an alternative interpretation, excess ki-
netic energies due to the Pauli principle [17, 18, 19].
The pictures of a molecule as drawn by the AIM and
ELF analyses are complementary: with AIM the one-
electron density of a molecule is composed of fragment
electron densities restricted to spatially disjoint ““atomic
basins”, while with a similar partitioning of the three-
dimensional space induced by ELF [17, 20, 21] the mo-
lecular density is composed of the fragment densities
found in spatially disjoint ‘“‘localization basins” which
correspond to those regions of space where core, bond,
lone pair or — in open-shell molecules — single electrons
tend to localize. Savin et al. [18] have used a combination
of both pictures to propose a quantitative definition of
the polarity of a bond through the calculation of atomic
partial charges using an AIM partitioning of the electron
density and the determination of bond populations with
an ELF partitioning. If an atom is linked to several
atoms, however, all its bonding partners will contribute
to its overall partial charge. The determination of the
polarity of an individual bond, therefore, seems to be
somewhat problematic with this scheme — at least as long
as the bonds are not related by symmetry operations.

Another way to combine AIM and ELF partitionings
to a topological definition of bond polarity has been
proposed by one of us in a study on the polarity of the
metal-metal bond in heterobimetallic complexes [12]. It
was suggested that the separate integration of the bond
population within each atomic domain of the bond
partners might provide a strictly quantitative measure of
the polarity of a bond. This can be done independently
for each of the bonds to a central atom. In the present
article we discuss first numerical results on bond polar-
ities obtained from this scheme (Some of the results
shown here were presented at the ChemBond workshop,
June 1-4, 2000, La Colle-sur-Loup, France [22]). The
systems considered here are small linear molecules, for
which the required numerical integrations could be
carried out with fair accuracy in a short time. Since they
serve as the first test of the applicability of our method,
they were chosen to be electronically simple molecules
for which there are essentially undisputed expectations
of their bond polarities. Besides the bond polarities
themselves, we also analyze the fluctuations of the
underlying basin populations.

The outline of the article is as follows. After an in-
troduction of the necessary theoretical background we
give some details of the implementation of the method
and the quantum chemical calculations of the molecules
considered. After a brief discussion of the core popula-
tions we then turn to a detailed discussion of the results

for the FCN molecule as an example of a molecule
which, according to the traditional picture, should pos-
sess a highly polar single bond and a not very polar triple
bond. Next we analyze the trend in the bond polarity for
the series of hydrogen halides from HF to HBr and
discuss the cases of the ionic bond in NaCl and the van
der Waals bond in NeAr. We conclude with a summary
of the most important findings.

2 Theory

In the theory of AIM an atom (free or bound) is defined
as the union of an attractor of the gradient vector field of
the one-electron density, Vp(r), and its associated basin
[13, 23]. Most often an attractor of Vp(r) topologically
corresponds to an isolated local maximum or the (3,—3)
critical point of the density at the position r, of a
nucleus. Other, more exotic situations are discussed in
Refs. [13, 23]. The atomic basin Qf associated with an
attractor consists of the points on all gradient paths
which terminate at the attractor. Two neighboring
atomic basins Q7 and Q are separated by a surface
SP.(r), called an atomic separatrix, which is never
crossed by a gradient path:

Vo(r) my(1) =0 VreSh(r) - (1)

An atomic separatrix normally contains a (3,—1) or
bond critical point (BCP) (for a discussion of exception-
al cases containing nonisolated BCPs see Ref. [23]). This
can be used to construct the separatrix by following the
gradient paths emanating from the BCP in the directions
of those two eigenvectors of the associated Hessian
matrix which correspond to its negative eigenvalues [24].

In close analogy to the gradient vector field of the
one-electron density, the gradient vector field of the
electron localization function Vi (r) can be used to de-
fine localization basins Q] as the union of an attractor of
the ELF and the points on all gradient paths which
terminate there [17, 21]. In general, the topology of 7(r)
is much more complicated than that of the one-electron
density. For linear molecules one regularly finds the
occurrence of (2,—2) ring attractors and (2,0) “‘saddle
rings” (Fig. 1). Again, one can use a saddle point or ring
in 5(r) to construct a surface S7(r) which is never crossed
by a gradient path of the ELF:

Vi(r) -nfi(r) =0 VreSi(r) . (2)

This surface separates two neighboring localization basins
Q! and Q!. Tt is called a localization separatrix in the
following. The localization basins themselves may be
classified as core basins, C(X), and valence basins [21].
When there are several core basins corresponding to the
K, L, and M shells they are denoted as Cg (X), CL(X),
and Cy(X), respectively. The valence basins in our
examples will be monosynaptic, V(X), or disynaptic,
V(X,Y). X and Y mean the atomic symbol of the nucleus
surrounded by the core basins or connected to the
valence basins (via core basins), respectively.

Both, the atomic and the localization basins provide
a partitioning of three-dimensional space into disjoint



regions. A given localization basin, however, is not
necessarily disjoint with a given atomic basin but rather
may be completely contained within it or partially
overlap with it. This is seen from Fig. 2, which shows a
superposition of atomic and localization separatrices for
the FCN molecule. The set

Q=9 NQ’ (3)

of the points contained in Q] and in Qf is called an
atomic subbasin of the localization basin and is denoted
as V(X)|Z or V(X,Y)|Z. Here, Z stands for the atomic
symbol of a nucleus contained in the corresponding
atomic basin. As indicated by Fig. 2, the core basins,
C(X), will usually be completely contained in the
corresponding atomic basin, X, while it may happen
that a monosynaptic localization basin, V(X), connected
to an atomic nucleus X overlaps with the atomic basin
containing a second nucleus Y, and similarly a disynap-
tic localization basin, V(X,Y), with the atomic basin of a
third nucleus.
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Fig. 1. Relief map of the electron localization function, #(r), for
the FCN molecule. The cut plane contains the molecular rotation
axis. Note that the double maxima behind the F atom and between
the C and N atoms become (2,—2) ring-shaped attractors in three
dimensions and that the saddle points close to the N, C and F core
peaks become (2,0) ring-shaped saddles

Fig. 2. Superposition of the separatrices between atomic basins
(dashed dark lines) and localization basins (solid dark lines) with
contour maps of the density (left) and the electron localization
function (right) for FCN at the B3LYP level. Core basins are not
explicitely labeled. The outermost of the contour lines corresponds
to values of logp = —4 and n =0.1; they increase in steps of
Alogp = 0.5 and Ay = 0.1, respectively
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The average electron population of a basin is given by

Mzﬁmg:/pmm (4)
Q

and its variance [13, 21] by

o’ =d*(N,Q) = / / a(r,p)dt dn + N —N. , (5)
QS QS

where 7(r;,r;) is the spin-summed two-electron density
normalized to N(N — 1) and N is the total number of
electrons [25]. The variance is a measure of the
fluctuation of the basin population. It can be broken
down into contributions from all other basins [26] as

oi=> By, (6)

t#£s

where

for a closed-shell Hartree—Fock or Kohn—Sham deter-
minant made up from a set {¢,(r)} of doubly occupied
spatial orbitals.

3 Method and technical details

The BCPs used to determine the atomic separatrices
were located with a version of the original EXTREME
program [24] which was modified to account for f
functions. The separatrices were then constructed by
following gradient paths in steps of £- Vp(r)/|Vp(r)|,
where ¢ = 0.025 au. For the linear molecules considered
here it is sufficient to construct only one such gradient
path per BCP in a given plane containing the molecular
rotation axis. The initial step away from the BCP could
be chosen as small as 0.0001 au in all cases.

Critical points and rings, i.e., (3,—1) and (2,0) saddle
points and rings, in the ELF were located with a
Newton—Raphson algorithm. To this end, the gradient
and the Hessian of the “core-part” D,/D° of n(r) were
calculated analytically and implemented in a program
which performs automated searches of the critical points
and rings in a user-chosen region of space. Localization
separatrices were then constructed in a similar way as
the atomic separatrices, again using a step length of
0.025 au. Yet, since the topology of 5(r) may lead to
strongly curved separatrices, especially when core basins
are involved, the stabilized Euler gradient-path-follow-
ing algorithm [27, 28] was used. In some cases, the
spherical valleys around core basins were so flat that it
was impossible to locate (3,—1) and (2,0) saddle points
and rings within them. In these cases the entire valley
bottom acts as a (1,+ 1) critical sphere. The separatrix
was then obtained as that sphere which minimizes the
sum of the ELF values on it. Note that this is an ap-
proximation since, for example, the separatrix might be
better represented as a distorted ellipsoid. The quality of
this approximation was checked by comparing core ba-
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sin populations obtained with it to those obtained with
separatrices constructed through gradient-path follow-
ing. For the three core populations of the FCN molecule
they agreed to with in about 0.01 electron numbers.

Atomic and localization separatrices were then
mapped on a two-dimensional grid with a spatial reso-
lution of 0.005 au. Typical grid sizes ranged from
1200 x 2400 for the HF molecule to 1500 x 3400 for
NaCl. Each grid point was assigned to a basin employ-
ing a recursive algorithm which checks whether the
neighboring points have already been assigned to a
separatrix or a basin and updates the corresponding
information of the point itself accordingly. The numer-
ical integration is then carried out in three steps using
cylindrical coordinates. First, for the radial integration
of the molecular orbitals and the density an adaptive
Clenshaw—Curtis quadrature with a determination of the
Chebyshev coefficients through a fast discrete cosine
transform [29] was used. Then, for integration in the
direction of the molecular rotation axis an ordinary
trapezoidal rule with a step length of 0.005 au was em-
ployed. Finally, the integrated values were multiplied by
2n for the density and ¢ orbitals and by n for non-o
orbitals, where degenerate orbital equivalence is en-
forced for those © and ¢ orbitals which happen to have a
nodal plane in the chosen integration plane.

The total populations obtained with this procedure
were accurate to better than 0.005 electron numbers. The
accuracy of the individual basin populations depends on
the accuracy of the separatrices and the steepness of the
density in the basin. On the basis of extensive experimen-
tation with step sizes for the separatrices, map grid sizes,
and integration parameters, we estimate it to be of the
order of 0.01-0.02 electron numbers for core basins and
highly populated valence basins and perhaps better than
0.005 electron numbers for more weakly populated basins.

The molecular orbitals and densities were determined
through closed-shell restricted Hartree-Fock (RHF) and
density functional theory (DFT) electronic structure
calculations with the Gaussian94 program package [30].
In the DFT calculations Becke’s three-parameter hybrid
functional [31, 32] with the Lee—Yang—Parr correlation
potential [33, 34] (B3LYP) was used. All atoms were
described with the augmented correlation-consistent
polarized valence triple-zeta basis sets of Dunning and
coworkers [35, 36, 37, 38], except for the Na atom, which
was described with the triple-zeta valence basis set of
Schéfer et al. [39] in combination with a (2p1d) polar-
ization function set of Huzinaga [40]. The molecular
geometries used in the bond population analysis are
given in Table 1. They were obtained from geometry
optimizations with the basis sets described previously. In
case of the NeAr dimer, however, the geometry is the
equilibrium geometry from the empirical n(r)-6 class I
interaction potential [41].

4 Results and discussion
The basin populations, their variances, and the percentual

contributions of the other basins to the variance of the
given basin for the set of molecules considered are

Table 1. Optimized equilibrium distances (A) obtained at the
restricted Hartree-Fock (RHF) level and with Becke’s three-
parameter hybrid functional with the Lee—Yang—Parr correlation
potential (B3LYP)

Molecule RHF B3LYP
FCN FON 1.124 1.151
rEC 1.243 1.266
HF 0.899 0.924
HCl 1.267 1.283
HBr 1.408 1.425
NaCl 2.394 2.374
NeAr? 3.48 3.48

“n(r)-6 class I potential [41]

displayed in Table 2. In the following we will mainly
discuss the B3LYP populations, which contain the effects
of electron correlation. Yet, since there are and there will
be a large number of increasingly accurate density
functional methods Table 2 also contains Hartree—Fock
populations for reference. The variance contribution
analysis is only given for the B3LYP populations;
however, the corresponding results for the Hartree—Fock
populations were similar: both agree within a few percent
for contributions larger than, say, 10% and mostly within
a few tenths of a percent for the smaller contributions.

4.1 Core populations

From Table 2 it is seen that the core populations are
nearly independent of the quantum chemical method
and, more importantly, of the chemical environment: the
RHF and B3LYP results always agree within the
estimated numerical accuracy of 0.01-0.02 electron
numbers for the core populations, and the core popu-
lations of the fluorine atom in FCN and HF and the
chlorine atom in HCI and NaCl match within the same
limits. Note that the core populations do not exactly
agree with chemical expectation. They are somewhat
larger than 2 for the K shell, scatter around 8 for the L
shell, and the M shell population is somewhat smaller
than 18 in the case of the bromine atom. The remaining
valence populations of the (hypothetical) free second-
row atoms are 3.90 (C), 4.89 (N), 6.86 (F), and 7.83 (Ne),
which corresponds to a defect of roughly 0.02 per
valence electron compared to the classical integer
valence electron numbers. For the third-row atoms there
seems to be no simple rule for the defect of the valence
electron numbers; here the remaining valence popula-
tions are 0.97 (Na), 6.94 (Cl), and 7.95 (Ar). In case of
the fourth-row bromine atom one even observes an
excess of 0.05 compared to the classical valence popu-
lation of 7 electron numbers. The actual values for core
and valence populations are fully in line with previous
findings on atoms and molecules [20, 21, 26].

4.2 FCN

A contour plot of the B3LYP density, the ELF, and the
resulting atomic and localization basins for the FCN
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electron popzulations, N, their Basin RHF B3LYP
variances, o7, and variance _ _ . .
contribution analysis (%). The N ol N al Variance contributions
subba?ins of Vl(Cl) Eiound \gith FCN
f(g}; and 1:1(%(1:1\?5 repectively  CON) 210 028 211 029 V(N)49, V(CN)|N 33, V(C.N)[C 14
), V(N) 310 112 331 1.20 V(C.N)|N 46, V(C,N)|C 31 C(N) 12
V(C,N)|N 320 153 2.63  1.44 V(C,N)|C 44, V(N) 39
V(C.N)|C 152 120 196 143 V(C.N)|N 44, V(N) 26, V(F) 10
V(C.N)|F 0.04 004 005  0.05 V(F) 40, V(C,N)|C 20
C(C) 209 025 210 026 V(C,N)|C 38, V(C,N)|N 23, V(N) 13
V(C,F)|C 021 020 023 022 V(F) 32, V(C,F)[F 22, V(C,N)|C 16
V(C,F)|F 115 077 097  0.69 V(F) 68, V(C,N)|C 12, V(C,F)|C 7
V(F) 645 112 650  1.15 V(C,F)|F 41, C(F) 28, V(C,N)|C 12
C(F) 214 036 214 037 V(F) 87, V(C,F)[F 8
HF
C(F) 213 036 214 037 V(F) 86, V(E.H)|F 11
V(F) 640 103 647  1.03 V(F.H)|F 57, C(F) 31, V(F,H)|H 12
V(F,H)|F 125 077 112 073 V(F) 80, V(E,H)[H 14, C(F) 6
V(F.H)|H 022 019 027 024 V(F) 53, V(E,H)|F 43, C(F) 4
HCl
Cx(Cl) 218 054 218 054 CL(Cl) 96, V(CI) 3
CL(C)) 789 103 788  1.05 Cx(C1) 49, V(CI) 43, V(CLH)[CI 5
V(Cly 614 113 624 115 C1(CI) 39, V(CLH)|CI 36, V(CLH)[H 23
V(CLH)[CI 109 076 097 0.0 V(CI) 60, V(CLH)[H 32, CL(C) 8
V(CLH)|H 070 049 073 0.50 V(Cl) 51, V(CLH)|CI 44, CL(Cl) 5
HBr
Cx (Br) 218 063 219  0.63 CL(Br) 92, Cy(Br) 8
Cy.(Br) 852 185 851 185 Cm(Br) 66, Cy (Br) 31
Cam(Br) 1725 215 1725  2.19 Cy(Br) 56, V(Br) 35, V(Br.H)|Br 5
V(Br) 621 139 631 144 Cum(Br) 54, V(Br,H)|Br 22, V(Br,H)[H 21
V(Br,H)[Br 092 070 084  0.65 V(Br) 49, V(Br,H)|H 33, Cy(Br) 17
V(Br,H)H 092 056 090  0.56 V(Br) 53, V(Br,H)|Br 38, Cy(Br) 8
NaCl
Cx(Cl) 218 054 218 0.54 CL(CI) 96, V(CD)[CI 4
CL(C]) 788 103 787  1.05 V(CI)|CI 50, Cx(Cl) 49
v(Ch[Cl 786  0.63 784  0.69 Cy(Cl) 77, Cy(Na) 12, V(CI)|Na 8
w(C)[CI 6.44 123
oCLN2)|Cl 142 0.88
V(CI)|Na 005 005 008  0.08 V(CI)[CI 67, C(Na) 29
u(Cl)[Na 001 0.0l
s(CLNa)[Na 0.04  0.04
Cy.(Na) 785 052 786  0.54 Cx(Na) 80, V(CD|CI 15, V(CI)|Na 4
Cx(Na) 218 044 217 044 Cy(Na) 100
NeAr
Cx (A1) 219 055 219  0.55 CL(Ar) 95, V(AT) 5
Cy (A1) 787 108 786  1.09 V(Ar) 52, Cx(Ar) 48
V(Ar) 794 058 795 0.6l CL(Ar) 94, Ck (A1) 4, V(Ne) 1
V(Ne) 783 041 783 042 C(Ne) 98, V(Ar) 2
C(Ne) 217 040 217 041 V(Ne) 100

molecule in a plane containing the molecular rotation
axis is shown in Fig. 2. A plot of the corresponding RHF
quantities is not shown since it was virtually indistin-
guishable for the eye. On the right-hand side of the figure
one can clearly see a toruslike structure slightly above
the fluorine nucleus which corresponds to the region
occupied by three lone pairs in sp® orbitals of the
classical hybrid orbital model. Yet, the population of the
monosynaptic valence basin V(F) is found to be 8%
larger than the idealized value of 6. Viewing this from a
different perspective, one can also say that 95% of the
average 6.86 valence electrons of the free fluorine atom

(Sect. 4.1) will find themselves localized in the monosy-
naptic basin V(F) after binding to the C-N fragment.
The fluorine atom invests only an average of 0.36
electrons into the bond with the carbon atom. The
remaining 0.84 electrons to the overall population of
1.20 electron numbers for the V(C,F) disynaptic basin
(Table 3) come from the carbon atom, and most of that
contribution is transferred to the atomic basin of the
fluorine atom, thus yielding the main contribution to
the partial charge of —0.66 elementary charges on
the fluorine atom. Table 3, which summarizes partial
atomic charges, ¢,, total disynaptic basin populations,
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Table 3. Partial charges, ¢, (in elementary charges), average
electron populations of the disynaptic basins, N[V(X,Y)], and
percentual atomic contributions, a,, to N[V(X, Y)] as obtained with
the B3LYP functional

qa NV(X,Y)] aa NV(Y,Z2)] aa

FCN

N -1.05 4.64 57

C 1.71 42 1.20 19

F -0.66 1 81
HF

F -0.73 1.39 81

H 0.73 19
HCl

Cl -0.27 1.70 57

H 0.27 43
HBr

Br -0.10 1.74 48

H 0.10 52
NaCl

Cl -0.89 7.92% 99

Na 0.89 1
"N[V(X)]

and their percentual atomic contributions, a,, demon-
strates that 81% of the V(C,F) basin population is
localized in the fluorine atomic basin — a result which
agrees very well with the expectation of the C—F bond
polarity on the basis of electronegativity arguments.
Furthermore, from Fig. 2 and Table 2 it is seen that even
a small fraction of 0.05 electron numbers of N[V(C, N)]
is pulled over into the fluorine atomic basin, which again
may be rationalized with the strong electronegativity of
the fluorine atom in combination with the relative
diffuseness of the electron distribution in the C—N bond
region. The average V(C,N) basin population of 4.64
electrons itself is only weakly polarized: 57% of it is
localized in the atomic domain of the more strongly
electronegative nitrogen atom. Since test calculations on
a free cyanide ion gave a much more strongly polarized
disynaptic basin population with 83% nitrogen contri-
bution, one may argue that the electron-pulling effect of
the fluorine atom indirectly leads to a depolarization of
the C—N bond. Despite that, the nitrogen atom bears a
strong partial charge of —1.05 elementary charges. One
may regard the excess electron as being localized in the
monosynaptic V(N) basin, whose average electron
number is 3.31. On the basis of the classical Lewis
structure and the localized orbital model one would
interprete the V(N) basin as the basin of a single lone
pair in an sp' orbital with an idealized occupation
number of 2. Thus, reinterpreting the much larger
average electron number calculated for V(N) in classical
terms one is led to postulate the contribution of an
“ionic” resonance structure to the electronic structure, in
which the nitrogen atom has two lone pairs and is
doubly bound to the carbon atom. The total electronic
structure would then be a mixture of this ionic structure,
the usual Lewis structure with a single lone pair and a
triple bond, and a truly ionic structure NCTF~.

This interpretation is supported by the values for
the variance, ¢, of the V(N) and V(C,N) basins and
the variance contribution analysis given in Table 2. The
variance of 1.20 for the V(N) basin and that of 1.62 for
the combined V(C,N) basin (not given in the table) are
not small compared to the basin populations. The rela-
tive fluctuations, A = az/ﬁ, [21, 26] amount to 0.36 for
the V(N) and 0.35 for the V(C,N) basin populations,
respectively. 77% of the fluctuation of the V(N) basin
population is due to that of V(C,N) and, vice versa, 58%
of the variance of the latter is due to the former, thus
indicating a noticeable delocalization of the electrons
between the two basins. In contrast, the relative fluctu-
ations of the core basins and that of the V(F) basin are
all below 0.18, indicating a much higher degree of lo-
calization in these basins. The population of the V(C,F)
basin has a variance of 0.81 (not given in the table) and,
owing to its small average electron number of only 1.20,
a large relative fluctuation of 0.68. The main contributor
to this fluctuation is the V(F) basin population (67%),
another 20% comes from the C—IN bond population.

On splitting the V(C,N) basin into atomic contribu-
tions, the variances of the resulting V(C,N)|N and
V(C,N)|C subbasins drop by only about 0.2 from the
variance of 1.62 found for the whole basin (Table 2). As
a consequence, the relative fluctuations, A, reach values
of 0.55 for V(C,N)|N and of 0.73 for V(C,N)|C, re-
spectively, while for the third and only very weakly
populated V(C,N)|F subbasin 4 attains its limiting value
of 1. It appears to be natural that the most important
contributors to the fluctuation in the population of a
given atomic subbasin of a bond electron pair localiza-
tion basin should be the other atomic subbasins of the
same localization basin. Table 2 shows that this expec-
tation is fulfilled for V(C,N)|N and V(C,N)|C: each of
them represents with a 44% contribution to the variance
in the electron population of the respective other basin
the most important partner for interbasin fluctuation of
electrons. Yet, from the table it also becomes clear that a
simple percentual variance contribution analysis may be
misleading in this respect. In the case of the V(C,F)
basin, the population of V(F) is still the most important
contributor to the fluctuation of both, N[V(C, F)|C] and
NI[V(C,F)|F], and the population of V(C,N)|C contrib-
utes even more to the fluctuation of N[V(C,F)|F] than
does the population of V(C,F)|C. This can simply be
explained by the comparatively small average electron
populations of the atomic subbasins of V(C,F). Taking
into account that N[V(F)] is 28 times and N[V(C,N)|C]
still more than 8 times larger than N[V(C,F)|C] it is
evident that the electrons in V(C,F)|F exchange much
more easily with those in V(C,F)|C rather than with the
electrons in V(F) or in V(C,N)|C. Weighting the variance
contributions to the atomic subbasin populations of
V(C,N) in the same way underlines their reciprocal
predominant role for the exchange of electron popula-
tion, though V(N) remains an important partner for the
fluctuation between its electrons and those of V(C,N)|N
and V(C,N)|C.

To summarize the most essential findings of this
subsection it is convenient to introduce a simplified
language which resembles the traditional notions of the



order and the partial ionic character of a bond but re-
places them with precisely defined terms calculated from
the combined ELF/AIM analysis presented here. For a
two-center bond the average bond electron pair number
is given as

by = N[V(X,Y)]/2 .

This term, which is defined from the ELF analysis alone,
has already been used implicitly as a substitute for the
bond order [21, 42]. The combined ELF/AIM analysis
now allows the introduction of a bond polarity index as

ay —ay N[V(X,Y)X]-N[V(X,Y)|Y]

PXY =700 TN (G DX+ NV DY)

where ay should be the larger of the percentual atomic
contributions. This index ranges between 0 for homo-
polar bonds and 1 for idealized ionic bonds, where one
of the a, will be 0. It shares this convenient property
with Pauling’s original definition of the partial ionic
character of a bond via an exponential function of the
square of the electronegativity difference [4] and, very
recently, a similar definition has also been advocated by
Bernard Silvi. Using bxy and pxy, we may say that the
F-C bond in FCN has the character of a partial single
bond formed by an average of 0.60 bond electron pairs
which are strongly polarized towards the F atom with a
polarity of 0.62. The C-N bond is a double-to-triple
bond formed by 2.32 bond electron pairs which are
weakly polarized towards the N atom with a polarity of
0.15. Furthermore, there is a marked resonance fluctu-
ation between the C—N bond and the nitrogen lone-pair
electron populations.

This picture is somewhat different when using the
Hartree-Fock wavefunction: here the average bond
electron pair number of the F—C bond is 0.68 and its
polarity 0.70, while 2.38 electron pairs with a polarity of
0.33 form the C—N bond. The marked overestimation of
the C-N bond polarity together with the slight overes-
timation of the bond population leads to a strongly in-
creased negative charge attributed to the nitrogen atom
which is partially compensated by a reduced V(N)
population (Table 2) to yield a total partial charge of
—1.40 elementary charges. This is a significant overesti-
mation compared to the value of —1.05 found with the
B3LYP density. Similarly, the somewhat too large par-
tial charge of —0.78 elementary charges found for the
fluorine atom is caused by the combined effect of slightly
overestimated C—F bond population and polarity. Nev-
ertheless, it is gratifying to see that qualitatively there is
not much difference between the analyses of the bonds in
FCN at the Hartree-Fock and the B3LYP levels of
theory.

4.3 Hydrogen halides

The contour plot of the density, the ELF, and the atomic
and localization basins of the hydrogen chloride mole-
cule shown in Fig. 3 is representative for the three
hydrogen halides considered here, the obvious difference
being the number of core basins. For HCI and HBr the
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Fig. 3. As in Fig. 1 for HCI

localization separatrix crosses the atomic separatrix at
density values smaller than 2 x 1073 au, while for HF
such a crossing was not observed. As a consequence, the
populations of what would have to be classified as
V(X)|H basins were found to be negligible, i.e., below
3 x 10~ electron numbers, and were left out of Table 2.

As in the case of the fluorine atom in FCN, in the
contour plot of n(r) for HCIl and the other hydrogen
halides one can identify a toruslike structure slightly
above the halogen nucleus which corresponds to the
three lone pairs in sp® orbitals of the traditional orbital
model. Again, for all the hydrogen halides the popula-
tions of the V(X) basin are larger than the idealized value
of 6 (by 4-8%). Note that N[V(F)] in HF is only very
slightly different from N[V(F)] in FCN as may be ex-
pected for such a “hard” element. Comparing the pop-
ulations of the monosynaptic V(X) basin to the valence
populations of the free halogen atoms (Sect. 4.1) one
finds that the fluorine atom invests only 0.39 electrons
into the bond with the hydrogen atom, the chlorine atom
0.70, and the bromine atom 0.74. Owing to its missing
core the hydrogen atom always has to give its electron
into the bond, thus yielding total disynaptic basin pop-
ulations of 1.39, 1.70, and 1.74, respectively. As dem-
onstrated in Table 3, in the case of HF 81% of
N[V(F,H)] is localized in the V(X,H)|X subbasin, while
for the other hydrogen halides the bond population
is shared in approximately equal portions between the
atoms.

Looking at the percentual variance contributions
found in Table 2 one notes that in each case for both
the V(X,H)|X and V(X,H)|H subbasins the V(X) basin is
the most important partner for fluctuation between the
electron populations — as was similarly observed for the
subbasins of V(C,F) in FCN. Taking into account that
in every case N[V(X)] is at least 6 times larger than
N[V(X,H)|X] or N[V(X,H)|H)] it becomes clear that
nevertheless the electrons fluctuate much more easily
between the two subbasins of V(X,H) than with V(X).
Still, there is a noticeable resonance fluctuation between
the bond and the lone-pair electron populations: the
variances ¢2[N, V(X, H)], of the populations of the entire
V(X,H) basins (not given in Table 2) are 0.76, 0.76, and
0.78 for HF, HCI, and HBr, respectively. These values
correspond to large relative fluctuations between 0.45
and 0.55 and they are to 80% and more due to the
population of V(X).

The average bond electron pair number, byy, in-
creases from 0.70 to 0.85 to 0.87 in the series HF, HCI,
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and HBr, while at the same time the polarity, pyy,
decreases from 0.62 to 0.14 to 0.04. In contrast to the
situation for HF and HCI, the last value for HBr
corresponds to a very slight polarization of the bond
charge distribution in the direction of the hydrogen at-
om. The trend in pyy agrees fairly well, but not exactly,
with what could be expected from electronegativity ar-
guments. The ionic characters of the X—H bond as given
by Pauling, for example, decrease from 0.60 to 0.19 to
0.11 along the same series [4], where, however, the bond
charge distribution is supposed to be always polarized in
the direction of the more electronegative halogen atom.
Yet, one should note that even though the H-Br bond is
found to be practically homopolar with the ELF/AIM
analysis there is a noticeable negative partial charge of
—0.10 elementary charges on the bromine atom. The
explanation for this seeming contradiction is that the
average number of bond electron pairs is smaller than 1,
so the hydrogen atom necessarily becomes positively
charged. This very nicely demonstrates that even for
diatomic molecules there is no direct correlation between
bond polarities and atomic partial charges and that the
number of bond electrons plays an essential role as well
— a fact which seems to have gone unnoticed in many
discussions.

On the Hartree—Fock level byy is slightly larger for
all three examples: it increases from 0.74 to 0.90 to 0.92
in the series HF, HCl, and HBr. The polarities of 0.70
and 0.22 for HF and HCI are also slightly larger than
their B3LYP counterparts, while the HBr bond is found
to be exactly homopolar.

4.4 NaCl

The electron localization function of NaCl as calculated
from the B3LYP determinant reveals no sign of a bond
electron pair and correspondingly there is no disynaptic
V(CI,Na) basin to be seen on the right-hand side of Fig. 4.
Instead there is only one deformed sphere of high 5
values around the two core shells of chlorine giving rise
to a monosynaptic V(Cl) basin. Classically this basin
corresponds to the region occupied by the four valence
electron pairs of a chloride anion. The average popula-
tion, N[V(CI)] is found to be 7.92 electron numbers,
which is almost exactly one electron more than the
valence population of 6.94 for the neutral free chlorine
atom (Sect. 4.1). These findings clearly indicate a purely
ionic electronic structure for the sodium chloride
molecule. Note that the localization separatrix sur-
rounding Cy(Na) is strongly deformed from a spherical
shape and that the shape of this deformation indicates
that the electrons localized in the L shell of Na are
repelled from the valence charge distribution of the
chloride ion which, on the other hand, is seen to be
polarized towards the sodium ion. The atomic separatrix
is nicely located in the valley of #(r) found between the
outermost regions of high n values around the sodium
and chlorine nuclei, so only a very small part of the
average population of V(Cl) is located in the atomic
basin of sodium: N[V(CI)|Na] is only 0.08 electron num-
bers or 1% of the total N[V(CI)] (Tables 2, 3).

CL(Na)

Fig. 4. As in Fig. 1 for NaCl

Nevertheless, this small part of the average population
of V(CI) which is located in the sodium atomic basin is
mainly responsible for the fact that the positive charge of
the sodium ion in NaCl is 11% smaller than the idealized
value of +1.

While there was no sign of a disynaptic V(CI,Na)
basin when calculating #(r) with the B3LYP functional,
in the Hartree—Fock case our algorithm did detect a (2,0)
saddle ring in the outermost sphere of high n values
around the chlorine nucleus. This unexpected finding
could be verified by optical inspection of the corre-
sponding region at very high resolution. The saddle ring
could be used as the starting point for the construction
of a localization separatrix between two subbasins called
v(Cl) and v(Cl,Na) of what was only one V(CIl) basin at
the B3LYP level. These basins, in turn, are further
subdivided by the atomic separatrix. As shown in Table
2, only a small part of 0.04 electron numbers of
N[v(Cl,Na)] is located in the sodium atomic basin. As a
consequence, the polarity of the formal bond electron
pair population is 0.95, which also suggests the classifi-
cation of the bond in sodium chloride as purely ionic —
independent of the theoretical approximation of its
electronic structure.

4.5 NeAr

Looking at the contour maps of p(r) and #(r) and the
corresponding basins for the NeAr dimer shown in
Fig. 5 the most important observation is that the
localization separatrix between V(Ne) and V(Ar) closely
follows the atomic separatrix. The small basin called A
which is located between the two separatrices was found
to contain only about 0.001 electrons on average — a
number which is of the same order of magnitude as our
estimated numerical accuracy for very weakly populated
basins. From the average electron populations given in
Table 2 it is seen that the net charges on the atoms are
zero within numerical accuracy.

The close resemblance between the atomic and the
valence localization basin separatrices is exactly what
one would hope to find for a chemically nonbonded
dimer. Note that the shape of #(r) indicates a repulsion
between the valence electrons of neon and argon. This is
completely in line with the purely repulsive behavior of
the interaction potential-energy curve on the Hartree—



Fig. 5. As in Fig. 1 for NeAr

Fock level, which becomes attractive only owing to in-
termonomer correlation effects, i.e., dispersion forces.
Furthermore, the variance contribution analysis given
in Table 2 demonstrates that the valence electron pop-
ulation of one atom hardly contributes to the fluctuation
in the valence electron population of the other atom,
namely by 2% and less. Clearly the electrons of an atom
remain very well localized within their own atomic basin
upon dimerization, as expected for a system without a
chemical bond.

5 Summary and conclusions

In this study we have presented the first numerical
results obtained with a recently proposed quantitative
measure for the polarity of a bond [12] through the
electron populations of the disjoint atomic subbasins
Qs = Q! NQ’ of a bond electron localization basin Q.
Both Q and the atomic basins Qf derive from an
analysis of the topology of simple spatial functions, the
ELF, 5(r), on the one hand, and the electronic density,
p(r), as the key ingredient of the AIM theory on the
other. The bond polarity index from the combined ELF/
AIM scheme as defined here refers to a localized spatial
picture of the bond. Additional information on the
fluctuation of the electrons between the various basins
and subbasins and, thus, on the amount of delocaliza-
tion can be obtained from investigation of the variance
of the basin populations, as has been shown before for
the separate AIM [13] and ELF [21, 26] analyses. After
an appropriate weighting with the average electron
numbers of the subbasins involved such a variance
contribution analysis shows that the electron population
fluctuates much more easily between the atomic subba-
sins of a common bond localization basin than with
other bond, lone pair, or core localization basins — as
should be expected.

In order to test our method it was applied to a
number of molecules with very simple and well-charac-
terized electronic structures. In agreement with common
expectation it was found that there is no (chemical) bond
between the atoms in the NeAr van der Waals dimer,
that the bond in NaCl is purely ionic, and that the po-
larity of the X—H bond decreases in the series HF, HCI,
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and HBr. One may consider it as a slight surprise that
the bond in HBr was found to be nearly exactly homo-
polar although there is a noticeable partial charge of 0.1
electron numbers on the hydrogen atom. Yet, this is a
natural consequence of an average number of bond
electron pairs somewhat smaller than 1. In general, in
any nonsymmetrical bonding situation partial atomic
charges may simply result from noninteger bond elec-
tron pair numbers without implying that the bond itself
be heteropolar.

The FCN molecule was investigated as an example
with a slightly more complicated electronic structure. The
ELF/AIM analysis yields perfectly reasonable results in
this case as well: the F—C bond has a bond electron pair
number of 0.60 and is strongly polarized towards the
fluorine atom with a bond polarity index of 0.62, while
2.32 electron pairs, which are weakly polarized towards
the nitrogen atom with a polarity of 0.15 form, the C-N
bond. These results, the partial charges on the atoms, and
the variance contribution analysis are compatible with a
resonance picture containing the usual Lewis structure
with the F—C bond as a single bond and the C-N bond as
a triple bond, an ionic structure NC*F~, and a further
“ionic” structure with a double bond between C and N
and two lone pairs at the nitrogen atom.

Clearly, though the results of the present study are
very encouraging the number of test molecules should be
significantly enlarged in order to study the performance
of the ELF/AIM bond polarity index in the analysis and
prediction of trends along the periodic table. Further-
more, other more complicated bonding situations need
to be considered, and a three-dimensional integration
algorithm is required to study nonlinear molecules. In
this laboratory and elsewhere work along these lines is
underway.
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